Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
Neurooncol Adv ; 6(1): vdae005, 2024.
Article in English | MEDLINE | ID: mdl-38616896

ABSTRACT

Background: Non-enhancing (NE) infiltrating tumor cells beyond the contrast-enhancing (CE) bulk of tumor are potential propagators of recurrence after gross total resection of high-grade glioma. Methods: We leveraged single-nucleus RNA sequencing on 15 specimens from recurrent high-grade gliomas (n = 5) to compare prospectively identified biopsy specimens acquired from CE and NE regions. Additionally, 24 CE and 22 NE biopsies had immunohistochemical staining to validate RNA findings. Results: Tumor cells in NE regions are enriched in neural progenitor cell-like cellular states, while CE regions are enriched in mesenchymal-like states. NE glioma cells have similar proportions of proliferative and putative glioma stem cells relative to CE regions, without significant differences in % Ki-67 staining. Tumor cells in NE regions exhibit upregulation of genes previously associated with lower grade gliomas. Our findings in recurrent GBM paralleled some of the findings in a re-analysis of a dataset from primary GBM. Cell-, gene-, and pathway-level analyses of the tumor microenvironment in the NE region reveal relative downregulation of tumor-mediated neovascularization and cell-mediated immune response, but increased glioma-to-nonpathological cell interactions. Conclusions: This comprehensive analysis illustrates differing tumor and nontumor landscapes of CE and NE regions in high-grade gliomas, highlighting the NE region as an area harboring likely initiators of recurrence in a pro-tumor microenvironment and identifying possible targets for future design of NE-specific adjuvant therapy. These findings also support the aggressive approach to resection of tumor-bearing NE regions.

2.
Free Neuropathol ; 52024 Jan.
Article in English | MEDLINE | ID: mdl-38469363

ABSTRACT

Human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause significant neurologic disease. Central nervous system (CNS) involvement of HIV has been extensively studied, with well-documented invasion of HIV into the brain in the initial stage of infection, while the acute effects of SARS-CoV-2 in the brain are unclear. Neuropathologic features of active HIV infection in the brain are well characterized whereas neuropathologic findings in acute COVID-19 are largely non-specific. On the other hand, neuropathologic substrates of chronic dysfunction in both infections, as HIV-associated neurocognitive disorders (HAND) and post-COVID conditions (PCC)/long COVID are unknown. Thus far, neuropathologic studies on patients with HAND in the era of combined antiretroviral therapy have been inconclusive, and autopsy studies on patients diagnosed with PCC have yet to be published. Further longitudinal, multidisciplinary studies on patients with HAND and PCC and neuropathologic studies in comparison to controls are warranted to help elucidate the mechanisms of CNS dysfunction in both conditions.

3.
J Neurooncol ; 166(3): 471-483, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38319496

ABSTRACT

OBJECTIVES: Neurocytomas (NCs) are rare intracranial tumors that can often be surgically resected. However, disease course is unpredictable in many patients and medical therapies are lacking. We have used whole exome sequencing to explore the molecular etiology for neurocytoma and assist in target identification to develop novel therapeutic interventions. METHODS: We used whole exome sequencing (WES) to compare the molecular landscape of 21 primary & recurrent NCs to five normal cerebellar control samples. WES data was analyzed using the Qiagen Clinical Insight program, variants of interest (VOI) were interrogated using ConSurf, ScoreCons, & Ingenuity Pathway Analysis Software to predict their potential functional effects, and Copy number variations (CNVs) in the genes of interest were analyzed by Genewiz (Azenta Life Sciences). RESULTS: Of 40 VOI involving thirty-six genes, 7 were pathogenic, 17 likely-pathogenic, and 16 of uncertain-significance. Of seven pathogenic NC associated variants, Glucosylceramidase beta 1 [GBA1 c.703T > C (p.S235P)] was mutated in 5/21 (24%), Coagulation factor VIII [F8 c.3637dupA (p.I1213fs*28)] in 4/21 (19%), Phenylalanine hydroxylase [PAH c.975C > A (p.Y325*)] in 3/21 (14%), and Fanconi anemia complementation group C [FANCC c.1162G > T (p.G388*)], Chromodomain helicase DNA binding protein 7 [CHD7 c.2839C > T (p.R947*)], Myosin VIIA [MYO7A c.940G > T (p.E314*)] and Dynein axonemal heavy chain 11 [DNAH11 c.3544C > T (p.R1182*)] in 2/21 (9.5%) NCs respectively. CNVs were noted in 85% of these latter 7 genes. Interestingly, a Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 [CTDSP2 c.472G > A (p.E158K)] of uncertain significance was also found in > 70% of NC cases. INTERPRETATION: The variants of interest we identified in the NCs regulate a variety of neurological processes including cilia motility, cell metabolism, immune responses, and DNA damage repair and provide novel insights into the molecular pathogenesis of these extremely rare tumors.


Subject(s)
Neurocytoma , Humans , Exome Sequencing , DNA Copy Number Variations
4.
Alzheimers Dement ; 20(3): 2262-2272, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38270275

ABSTRACT

Individuals with Down syndrome (DS) have a partial or complete trisomy of chromosome 21, resulting in an increased risk for early-onset Alzheimer's disease (AD)-type dementia by early midlife. Despite ongoing clinical trials to treat late-onset AD, individuals with DS are often excluded. Furthermore, timely diagnosis or management is often not available. Of the genetic causes of AD, people with DS represent the largest cohort. Currently, there is a knowledge gap regarding the underlying neurobiological mechanisms of DS-related AD (DS-AD), partly due to limited access to well-characterized brain tissue and biomaterials for research. To address this challenge, we created an international consortium of brain banks focused on collecting and disseminating brain tissue from persons with DS throughout their lifespan, named the Down Syndrome Biobank Consortium (DSBC) consisting of 11 biobanking sites located in Europe, India, and the USA. This perspective describes the DSBC harmonized protocols and tissue dissemination goals.


Subject(s)
Alzheimer Disease , Down Syndrome , Humans , Down Syndrome/genetics , Biological Specimen Banks , Alzheimer Disease/genetics , Brain , Europe
5.
ACS Cent Sci ; 10(1): 104-121, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38292607

ABSTRACT

Antibodies that target the ß-amyloid peptide (Aß) and its associated assemblies are important tools in Alzheimer's disease research and have emerged as promising Alzheimer's disease therapies. This paper reports the creation and characterization of a triangular Aß trimer mimic composed of Aß17-36 ß-hairpins and the generation and study of polyclonal antibodies raised against the Aß trimer mimic. The Aß trimer mimic is covalently stabilized by three disulfide bonds at the corners of the triangular trimer to create a homogeneous oligomer. Structural, biophysical, and cell-based studies demonstrate that the Aß trimer mimic shares characteristics with oligomers of full-length Aß. X-ray crystallography elucidates the structure of the trimer and reveals that four copies of the trimer assemble to form a dodecamer. SDS-PAGE, size exclusion chromatography, and dynamic light scattering reveal that the trimer also forms higher-order assemblies in solution. Cell-based toxicity assays show that the trimer elicits LDH release, decreases ATP levels, and activates caspase-3/7 mediated apoptosis. Immunostaining studies on brain slices from people who lived with Alzheimer's disease and people who lived with Down syndrome reveal that the polyclonal antibodies raised against the Aß trimer mimic recognize pathological features including different types of Aß plaques and cerebral amyloid angiopathy.

6.
Surg Neurol Int ; 14: 334, 2023.
Article in English | MEDLINE | ID: mdl-37810313

ABSTRACT

Background: Intradural extramedullary teratomas in the cervical or cervicomedullary region are rare in adults. Case Description: We report a symptomatic, mature teratoma at the cervicomedullary junction in a 52-year-old Hispanic female who also has a type I diastematomyelia in the thoracolumbar spine. The patient underwent surgical resection of the lesion with the resolution of presenting symptoms. Histopathology of the lesion revealed a mature cystic teratoma with pulmonary differentiation. Conclusion: We discuss the case along with a review of pertinent literature and considerations with regard to the diagnosis, etiology, prognosis, and management of this unusual pathology.

7.
bioRxiv ; 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37546983

ABSTRACT

The pathogenesis of Alzheimer's disease (AD) depends on environmental and heritable factors, with remarkable differences evident between individuals at the molecular level. Here we present a transcriptomic survey of AD using spatial transcriptomics (ST) and single-nucleus RNA-seq in cortical samples from early-stage AD, late-stage AD, and AD in Down Syndrome (AD in DS) donors. Studying AD in DS provides an opportunity to enhance our understanding of the AD transcriptome, potentially bridging the gap between genetic mouse models and sporadic AD. Our analysis revealed spatial and cell-type specific changes in disease, with broad similarities in these changes between sAD and AD in DS. We performed additional ST experiments in a disease timecourse of 5xFAD and wildtype mice to facilitate cross-species comparisons. Finally, amyloid plaque and fibril imaging in the same tissue samples used for ST enabled us to directly link changes in gene expression with accumulation and spread of pathology.

8.
Cell Rep ; 42(7): 112790, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37436895

ABSTRACT

Cholesterol is a structural component of cell membranes. How rapidly growing tumor cells maintain membrane cholesterol homeostasis is poorly understood. Here, we found that glioblastoma (GBM), the most lethal brain tumor, maintains normal levels of membrane cholesterol but with an abundant presence of cholesteryl esters (CEs) in its lipid droplets (LDs). Mechanistically, SREBP-1 (sterol regulatory element-binding protein 1), a master transcription factor that is activated upon cholesterol depletion, upregulates critical autophagic genes, including ATG9B, ATG4A, and LC3B, as well as lysosome cholesterol transporter NPC2. This upregulation promotes LD lipophagy, resulting in the hydrolysis of CEs and the liberation of cholesterol from the lysosomes, thus maintaining plasma membrane cholesterol homeostasis. When this pathway is blocked, GBM cells become quite sensitive to cholesterol deficiency with poor growth in vitro. Our study unravels an SREBP-1-autophagy-LD-CE hydrolysis pathway that plays an important role in maintaining membrane cholesterol homeostasis while providing a potential therapeutic avenue for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Sterol Regulatory Element Binding Protein 1/metabolism , Brain Neoplasms/metabolism , Homeostasis/physiology , Glioblastoma/pathology , Cholesterol/metabolism , Autophagy
9.
Neuro Oncol ; 25(12): 2221-2236, 2023 12 08.
Article in English | MEDLINE | ID: mdl-37436963

ABSTRACT

BACKGROUND: Schwannomas are common peripheral nerve sheath tumors that can cause severe morbidity given their stereotypic intracranial and paraspinal locations. Similar to many solid tumors, schwannomas and other nerve sheath tumors are primarily thought to arise due to aberrant hyperactivation of the RAS growth factor signaling pathway. Here, we sought to further define the molecular pathogenesis of schwannomas. METHODS: We performed comprehensive genomic profiling on a cohort of 96 human schwannomas, as well as DNA methylation profiling on a subset. Functional studies including RNA sequencing, chromatin immunoprecipitation-DNA sequencing, electrophoretic mobility shift assay, and luciferase reporter assays were performed in a fetal glial cell model following transduction with wildtype and tumor-derived mutant isoforms of SOX10. RESULTS: We identified that nearly one-third of sporadic schwannomas lack alterations in known nerve sheath tumor genes and instead harbor novel recurrent in-frame insertion/deletion mutations in SOX10, which encodes a transcription factor responsible for controlling Schwann cell differentiation and myelination. SOX10 indel mutations were highly enriched in schwannomas arising from nonvestibular cranial nerves (eg facial, trigeminal, vagus) and were absent from vestibular nerve schwannomas driven by NF2 mutation. Functional studies revealed these SOX10 indel mutations have retained DNA binding capacity but impaired transactivation of glial differentiation and myelination gene programs. CONCLUSIONS: We thus speculate that SOX10 indel mutations drive a unique subtype of schwannomas by impeding proper differentiation of immature Schwann cells.


Subject(s)
Nerve Sheath Neoplasms , Neurilemmoma , Neuroma, Acoustic , Humans , INDEL Mutation , Transcriptional Activation , Neurilemmoma/genetics , Neurilemmoma/pathology , Neuroma, Acoustic/pathology , Mutation , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism
10.
Commun Biol ; 6(1): 668, 2023 06 24.
Article in English | MEDLINE | ID: mdl-37355729

ABSTRACT

Precise, scalable, and quantitative evaluation of whole slide images is crucial in neuropathology. We release a deep learning model for rapid object detection and precise information on the identification, locality, and counts of cored plaques and cerebral amyloid angiopathy (CAA). We trained this object detector using a repurposed image-tile dataset without any human-drawn bounding boxes. We evaluated the detector on a new manually-annotated dataset of whole slide images (WSIs) from three institutions, four staining procedures, and four human experts. The detector matched the cohort of neuropathology experts, achieving 0.64 (model) vs. 0.64 (cohort) average precision (AP) for cored plaques and 0.75 vs. 0.51 AP for CAAs at a 0.5 IOU threshold. It provided count and locality predictions that approximately correlated with gold-standard human CERAD-like WSI scoring (p = 0.07 ± 0.10). The openly-available model can quickly score WSIs in minutes without a GPU on a standard workstation.


Subject(s)
Amyloidogenic Proteins , Plaque, Amyloid , Humans , Records , Staining and Labeling , Virion
11.
Neuropathology ; 43(6): 441-456, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37198977

ABSTRACT

Hyaline protoplasmic astrocytopathy (HPA) describes a rare histologic finding of eosinophilic, hyaline cytoplasmic inclusions in astrocytes, predominantly in the cerebral cortex. It has mainly been observed in children and adults with a history of developmental delay and epilepsy, frequently with focal cortical dysplasia (FCD), but the nature and significance of these inclusions are unclear. In this study, we review the clinical and pathologic features of HPA and characterize the inclusions and brain tissue in which they are seen in surgical resection specimens from five patients with intractable epilepsy and HPA compared to five patients with intractable epilepsy without HPA using immunohistochemistry for filamin A, previously shown to label these inclusions, and a variety of astrocytic markers including aldehyde dehydrogenase 1 family member L1 (ALDH1L1), SRY-Box Transcription Factor 9 (SOX9), and glutamate transporter 1/excitatory amino acid transporter 2 (GLT-1/EAAT2) proteins. The inclusions were positive for ALDH1L1 with increased ALDH1L1 expression in areas of gliosis. SOX9 was also positive in the inclusions, although to a lesser intensity than the astrocyte nuclei. Filamin A labeled the inclusions but also labeled reactive astrocytes in a subset of patients. The immunoreactivity of the inclusions for various astrocytic markers and filamin A as well as the positivity of filamin A in reactive astrocytes raise the possibility that these astrocytic inclusions may be the result of an uncommon reactive or degenerative phenomenon.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Child , Adult , Humans , Filamins/metabolism , Hyalin , Brain/pathology , Astrocytes/pathology
12.
bioRxiv ; 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36711704

ABSTRACT

Precise, scalable, and quantitative evaluation of whole slide images is crucial in neuropathology. We release a deep learning model for rapid object detection and precise information on the identification, locality, and counts of cored plaques and cerebral amyloid angiopathies (CAAs). We trained this object detector using a repurposed image-tile dataset without any human-drawn bounding boxes. We evaluated the detector on a new manually-annotated dataset of whole slide images (WSIs) from three institutions, four staining procedures, and four human experts. The detector matched the cohort of neuropathology experts, achieving 0.64 (model) vs. 0.64 (cohort) average precision (AP) for cored plaques and 0.75 vs. 0.51 AP for CAAs at a 0.5 IOU threshold. It provided count and locality predictions that correlated with gold-standard CERAD-like WSI scoring (p=0.07± 0.10). The openly-available model can quickly score WSIs in minutes without a GPU on a standard workstation.

13.
J Neuropathol Exp Neurol ; 82(4): 333-344, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36715085

ABSTRACT

Cerebral microbleeds (CMBs) detected on magnetic resonance imaging are common in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). The neuropathologic correlates of CMBs are unclear. In this study, we characterized findings relevant to CMBs in autopsy brain tissue of 8 patients with genetically confirmed CADASIL and 10 controls within the age range of the CADASIL patients by assessing the distribution and extent of hemosiderin/iron deposits including perivascular hemosiderin leakage (PVH), capillary hemosiderin deposits, and parenchymal iron deposits (PID) in the frontal cortex and white matter, basal ganglia and cerebellum. We also characterized infarcts, vessel wall thickening, and severity of vascular smooth muscle cell degeneration. CADASIL subjects had a significant increase in hemosiderin/iron deposits compared with controls. This increase was principally seen with PID. Hemosiderin/iron deposits were seen in the majority of CADASIL subjects in all brain areas. PVH was most pronounced in the frontal white matter and basal ganglia around small to medium sized arterioles, with no predilection for the vicinity of vessels with severe vascular changes or infarcts. CADASIL subjects have increased brain hemosiderin/iron deposits but these do not occur in a periarteriolar distribution. Pathogenesis of these lesions remains uncertain.


Subject(s)
CADASIL , Leukoencephalopathies , Humans , CADASIL/complications , CADASIL/diagnostic imaging , CADASIL/pathology , Hemosiderin , Cerebral Infarction/complications , Cerebral Infarction/diagnostic imaging , Cerebral Infarction/pathology , Leukoencephalopathies/pathology , Magnetic Resonance Imaging , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology , Iron
14.
Biomedicines ; 10(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36359362

ABSTRACT

Neurocytomas are rare low-grade brain tumors predominantly affecting young adults, but their cellular origin and molecular pathogenesis is largely unknown. We previously reported a sellar neurocytoma that secreted excess arginine vasopressin causing syndrome of inappropriate anti-diuretic hormone (SIADH). Whole exome sequencing in 21 neurocytoma tumor tissues identified somatic mutations in the plant homeodomain finger protein 14 (PHF14) in 3/21 (14%) tumors. Of these mutations, two were missense mutations and 4 caused splicing site losses, resulting in PHF14 dysfunction. Employing shRNA-mediated knockdown and CRISPR/Cas9-based knockout approaches, we demonstrated that loss of PHF14 increased proliferation and colony formation in five different human, mouse and rat mesenchymal and differentiated cell lines. Additionally, we demonstrated that PHF14 depletion resulted in upregulation of platelet derived growth factor receptor-alpha (PDGFRα) mRNA and protein in neuroblastoma SHSY-5Y cells and led to increased sensitivity to treatment with the PDGFR inhibitor Sunitinib. Furthermore, in a neurocytoma primary culture harboring splicing loss PHF14 mutations, overexpression of wild-type PHF14 and sunitinib treatment inhibited cell proliferation. Nude mice, inoculated with PHF14 knockout SHSY-5Y cells developed earlier and larger tumors than control cell-inoculated mice and Sunitinib administration caused greater tumor suppression in mice harboring PHF-14 knockout than control SHSY-5Y cells. Altogether our studies identified mutations of PHF14 in 14% of neurocytomas, demonstrate it can serve as an alternative pathway for certain cancerous behavior, and suggest a potential role for Sunitinib treatment in some patients with residual/recurrent neurocytoma.

15.
J Neuropathol Exp Neurol ; 81(7): 565-576, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35656871

ABSTRACT

The elderly HIV-positive population is growing due to the widespread use of combination antiretroviral therapy (cART), but the effects of longstanding HIV infection on brain aging are unknown. A significant proportion of HIV-positive individuals develop HIV-associated neurocognitive disorder (HAND) even on cART, but the pathogenesis of HAND is unknown. Although neuroinflammation is postulated to play an important role in aging and neurodegenerative diseases such as Alzheimer disease (AD), it is unclear whether HIV accelerates aging or increases the risk for AD. We examined the brains of 9 elderly HIV-positive subjects on cART without co-infection by hepatitis C virus compared to 7 elderly HIV-negative subjects. Microglial and astrocyte activation and AD pathologic change in association with systemic comorbidities and neurocognitive assessment were evaluated. There was no difference in microglial or astrocyte activation between our HIV-positive and HIV-negative cohorts. One HIV-positive subject and 2 HIV-negative subjects demonstrated significant amyloid deposition, predominantly in the form of diffuse senile plaques, but these individuals were cognitively normal. Neurofibrillary tangles were sparse in the HIV-positive cohort. There was a high prevalence of cardiovascular comorbidities in all subjects. These findings suggest that multiple factors likely contribute to aging and cognitive impairment in elderly HIV-positive individuals on cART.


Subject(s)
Alzheimer Disease , HIV Infections , Aged , Alzheimer Disease/complications , Alzheimer Disease/epidemiology , Brain/pathology , HIV Infections/complications , Humans , Neurofibrillary Tangles/pathology , Plaque, Amyloid/pathology
16.
Neurooncol Adv ; 4(1): vdac030, 2022.
Article in English | MEDLINE | ID: mdl-35386566

ABSTRACT

Background: Patients with isocitrate dehydrogenase (IDH) mutant gliomas have been associated with longer survival time than those that are IDH wild-type. Previous studies have shown the prognostic value of O 6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation for glioblastoma multiforme (GBM), which are predominantly IDH wild-type. Little is known of the prognostic value of MGMT methylation status for IDH mutant gliomas. Methods: We retrospectively identified IDH mutant gliomas patients between 2011 and 2020 that were tested for MGMT promoter methylation. We generated Kaplan-Meier estimator curves and performed Cox proportional hazard models for overall survival (OS) and progression-free survival (PFS) to compare the outcomes of MGMT promoter methylated versus MGMT unmethylated patients. Results: Of 419 IDH mutant gliomas with MGMT promoter methylation testing, we identified 54 GBMs, 223 astrocytomas, and 142 oligodendrogliomas. 62.3% patients had MGMT methylated tumors while 37.7% were MGMT unmethylated. On Kaplan-Meier analysis, median OS for all MGMT methylated patients was 17.7 years and 14.6 years for unmethylated patients. Median PFS for all MGMT methylated patients was 7.0 years and for unmethylated patients 5.2 years. After univariate subgroup analysis, MGMT methylation is only prognostic for OS and PFS in GBM, and for OS in anaplastic oligodendroglioma and anaplastic oligodendroglioma for OS. In multivariate analysis, MGMT unmethylated GBM patients carry a higher risk of death (HR 7.72, 95% CI 2.10-28.33) and recurrence (HR 3.85, 95% CI 1.35-10.96). Conclusions: MGMT promoter methylation is associated with better OS and PFS for IDH mutant GBM. MGMT promoter methylation testing for other IDH mutant glioma subtypes may not provide additional information on prognostication.

17.
Geroscience ; 44(3): 1609-1620, 2022 06.
Article in English | MEDLINE | ID: mdl-35411474

ABSTRACT

Epigenetic clocks based on patterns of DNA methylation have great importance in understanding aging and disease; however, there are basic questions to be resolved in their application. It remains unknown whether epigenetic age acceleration (EAA) within an individual shows strong correlation between different primary tissue sites, the extent to which tissue pathology and clinical illness correlate with EAA in the target organ, and if EAA variability across tissues differs according to sex. Considering the outsized role of age-related illness in Human Immunodeficiency Virus-1 (HIV), these questions were pursued in a sample enriched for tissue from HIV-infected individuals. We used a custom methylation array to generate DNA methylation data from 661 samples representing 11 human tissues (adipose, blood, bone marrow, heart, kidney, liver, lung, lymph node, muscle, spleen and pituitary gland) from 133 clinically characterized, deceased individuals, including 75 infected with HIV. We developed a multimorbidity index based on the clinical disease history. Epigenetic age was moderately correlated across tissues. Blood had the greatest number and degree of correlation, most notably with spleen and bone marrow. However, blood did not correlate with epigenetic age of liver. EAA in liver was weakly correlated with EAA in kidney, adipose, lung and bone marrow. Clinically, hypertension was associated with EAA in several tissues, consistent with the multiorgan impacts of this illness. HIV infection was associated with positive age acceleration in kidney and spleen. Male sex was associated with increased epigenetic acceleration in several tissues. Preliminary evidence indicates that amyotrophic lateral sclerosis is associated with positive EAA in muscle tissue. Finally, greater multimorbidity was associated with greater EAA across all tissues. Blood alone will often fail to detect EAA in other tissues. While hypertension is associated with increased EAA in several tissues, many pathologies are associated with organ-specific age acceleration.


Subject(s)
HIV Infections , HIV-1 , Hypertension , Acceleration , Epigenesis, Genetic , HIV Infections/genetics , Humans , Male
18.
Sci Rep ; 12(1): 1078, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35058510

ABSTRACT

This study aimed to differentiate isocitrate dehydrogenase (IDH) mutation status with the voxel-wise clustering method of multiparametric magnetic resonance imaging (MRI) and to discover biological underpinnings of the clusters. A total of 69 patients with treatment-naïve diffuse glioma were scanned with pH-sensitive amine chemical exchange saturation transfer MRI, diffusion-weighted imaging, fluid-attenuated inversion recovery, and contrast-enhanced T1-weighted imaging at 3 T. An unsupervised two-level clustering approach was used for feature extraction from acquired images. The logarithmic ratio of the labels in each class within tumor regions was applied to a support vector machine to differentiate IDH status. The highest performance to predict IDH mutation status was found for 10-class clustering, with a mean area under the curve, accuracy, sensitivity, and specificity of 0.94, 0.91, 0.90, and 0.91, respectively. Targeted biopsies revealed that the tissues with labels 7-10 showed high expression levels of hypoxia-inducible factor 1-alpha, glucose transporter 3, and hexokinase 2, which are typical of IDH wild-type glioma, whereas those with labels 1 showed low expression of these proteins. In conclusion, A machine learning model successfully predicted the IDH mutation status of gliomas, and the resulting clusters properly reflected the metabolic status of the tumors.


Subject(s)
Glioma/diagnostic imaging , Image Processing, Computer-Assisted/methods , Isocitrate Dehydrogenase/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cluster Analysis , Female , Glioma/genetics , Glioma/pathology , Humans , Isocitrate Dehydrogenase/metabolism , Machine Learning , Male , Middle Aged , Multiparametric Magnetic Resonance Imaging/methods , Mutation/genetics , Retrospective Studies , Support Vector Machine
19.
J Neurosci ; 42(8): 1587-1603, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34987109

ABSTRACT

Astrocytes are critical for the development and function of synapses. There are notable species differences between human astrocytes and commonly used animal models. Yet, it is unclear whether astrocytic genes involved in synaptic function are stable or exhibit dynamic changes associated with disease states and age in humans, which is a barrier in understanding human astrocyte biology and its potential involvement in neurologic diseases. To better understand the properties of human astrocytes, we acutely purified astrocytes from the cerebral cortices of over 40 humans across various ages, sexes, and disease states. We performed RNA sequencing to generate transcriptomic profiles of these astrocytes and identified genes associated with these biological variables. We found that human astrocytes in tumor-surrounding regions downregulate genes involved in synaptic function and sensing of signals in the microenvironment, suggesting involvement of peritumor astrocytes in tumor-associated neural circuit dysfunction. In aging, we also found downregulation of synaptic regulators and upregulation of markers of cytokine signaling, while in maturation we identified changes in ionic transport with implications for calcium signaling. In addition, we identified subtle sexual dimorphism in human cortical astrocytes, which has implications for observed sex differences across many neurologic disorders. Overall, genes involved in synaptic function exhibit dynamic changes in the peritumor microenvironment and aging. These data provide powerful new insights into human astrocyte biology in several biologically relevant states that will aid in generating novel testable hypotheses about homeostatic and reactive astrocytes in humans.SIGNIFICANCE STATEMENT Astrocytes are an abundant class of cells playing integral roles at synapses. Astrocyte dysfunction is implicated in a variety of human neurologic diseases. Yet our knowledge of astrocytes is largely based on mouse studies. Direct knowledge of human astrocyte biology remains limited. Here, we present transcriptomic profiles of human cortical astrocytes, and we identified molecular differences associated with age, sex, and disease state. We found that peritumor and aging astrocytes downregulate genes involved in astrocyte-synapse interactions. These data provide necessary insight into human astrocyte biology that will improve our understanding of human disease.


Subject(s)
Astrocytes , Transcriptome , Aging/pathology , Animals , Astrocytes/physiology , Female , Humans , Male , Mice , Synapses/physiology , Tumor Microenvironment
20.
J Virol ; 96(4): e0196921, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34935438

ABSTRACT

Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited antiviral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine (Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19) and cytokine (Ifn-λ and Tnf-α) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease. IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Central Nervous System Viral Diseases/immunology , Microglia/immunology , SARS-CoV-2/physiology , Virus Replication/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , Central Nervous System/immunology , Central Nervous System/virology , Central Nervous System Viral Diseases/genetics , Central Nervous System Viral Diseases/virology , Chemokines/genetics , Chemokines/immunology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Microglia/virology , Neurons/immunology , Neurons/virology , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...